Resumo Teórico – Função do Primeiro Grau e seu Gráfico – Parte 1

Neste post, vamos fazer um resumo teórico sobre função do primeiro grau, explicando o que são seus coeficientes e o formato geral do seu gráfico! Se você não conferiu os posts sobre Variáveis, Equações, Reta Numérica e Função, vá lá no blog e confira!

Definição

Uma função do primeiro grau é toda equação que pode ser escrita na forma y = ax + b, onde x é a variável independente e y é a variável dependente; a e b são constantes dentro do conjunto dos números reais (a \in \mathbb{R} e b \in \mathbb{R}). Já estamos habituados com esse formato, certo?
Por que a expressão do tipo y = ax + b é do primeiro grau? Isso está relacionado com o expoente da variável x na expressão y = ax + b. Note que o expoente vale 1 (\inline \mathbf{x^{1} = x}), como o expoente é 1, dizemos que a equação y = ax + b é do primeiro grau!

Exemplos:

a) y = x + 3 (a = 1 ; b = 3)

b) y = -2x + 1 (a = -2 ; b = 1)

c) y = 1,5x – 8 (a = 1,5 ; b = -8)

Gráfico de uma Função do Primeiro Grau

O Gráfico de uma função é uma representação no Plano Cartesiano do conjunto de pontos (x ; y) que tenham x pertencente ao Domínio e y = f(x) pertencente à Imagem da função f.

Exemplo 1: Como é o gráfico da função f(x) = 2x?

Vamos montar a Tabela 1 abaixo:

Tabela 1 do Exemplo 1.
Tabela 1 do Exemplo 1.

Perceba que a partir da Tabela 1, obtemos os seguintes pares ordenados: (-2 ; -4) ; (-1 ; -2) ; (0 ; 0) ; (1 ; 2) ; (2 ; 4). Certo?

Plotando esses pares ordenados no plano cartesiano:

Pares Ordenados do Exemplo 1.
Pares Ordenados do Exemplo 1.

O Gráfico da função f(x) = 2x então é formado ligando os pontos formados pelos pares ordenados:

Gráfico da função do Exemplo 1.

Comentários:

O Exemplo 1 acima mostrou que o gráfico da função f(x) = 2x, é uma reta que passa pela Origem O (0 ; 0) do sistema.
Podemos generalizar afirmando que toda função do primeiro grau apresenta um gráfico em forma de reta (linear)! Por isso, a função do primeiro grau recebe o nome de Função Linear. Ela também é conhecida como Função Afim.

Coeficientes Angular e Linear

As constantes a e b na expressão y = ax + b têm nomes específicos. A constante a é chamada de coeficiente angular e a constante b é chamada de coeficiente linear.
O Coeficiente angular (constante a) influencia diretamente na inclinação da reta em relação ao Eixo x.

Quanto maior o valor de a, mais inclinada fica a reta!
Quanto maior o valor do coeficiente angular a, mais inclinada fica a reta. A reta vermelha tem o maior valor para a.

O Coeficiente linear (constante b) não influencia na inclinação da reta, mas altera a posição da reta no plano (translada a reta).

O valor do coeficiente linear b, altera a posição da reta no plano cartesiano (translada a reta)!
O valor do coeficiente linear b, altera a posição da reta no plano cartesiano (translada a reta)!

Pergunta 1: Monte o gráfico das seguintes funções. Observe se são retas!

a) f(x) = 3x – 2

b) f(x) = (x/2) + 4

Tranquilo? Acompanhou esse resumo teórico da primeira parte de função do primeiro grau? Espero que sim!
No próximo posto vamos detalhar ainda mais o gráfico da função do primeiro grau!
Fique sempre de olho no Blog do Kuadro e no Canal do Kuadro para mais Resumos Teóricos. Até mais!

Resumo Teórico – Conceito de Função

Nest post vamos fazer um resumo teórico introduzindo o conceito de função. Vamos usar muitos conceitos apresentados no post de Conjuntos, Variáveis e Equações e do post de Reta Numérica e Par Ordenado! Vamos nessa!

Definição

Uma função f é uma lei (relação) que faz cada elemento x de um conjunto A corresponder a um único elemento y do conjunto B. Dizemos que y é a variável dependente e x a variável independente.

Esquema de uma função que transforma x em y.
Esquema de uma função que transforma x em y.

Podemos expressar matematicamente a definição das seguintes formas:

  • f: \rightarrow B ou f: \dpi{120} \xrightarrow[ ]{ f }(Lê-se: função ƒ  de A em B, ou aplicação ƒ de A em B, ou transformação ƒ de A em B.)
  • \mapsto(Lê-se: função ƒ transforma (ou leva) x em y.)
  • y = f(x) (Lê-se: y é uma função ƒ de x \Rightarrow o valor de y depende do valor atribuído a x).

Exemplo 1: Dada a expressão y = x + 2 . Lembra que podemos escrever y = f(x)? Com isso queremos dizer que o valor de y depende do valor de x! Então, vamos escolher três (3) valores para x e avaliar como y varia.

  • Quando x = -1, quanto vale f(-1) = ? ; f(x) = x + 2 \Rightarrow f(-1) = -1 + 2 \Rightarrow f(-1) = 2
  • Quando x = 0, quanto vale f(0) = ? ; f(x) = x + 2 \Rightarrow f(0) = 0 + 2 \Rightarrow f(0) = 3
  • Quando x = 1, quanto vale f(1) = ? ; f(x) = x + 2 \Rightarrow f(-1) = 1 + 2 \Rightarrow f(1) = 4

Comentários: Perceba que mostramos como o valor de y varia quando o valor de x varia, ou seja, o valor de y depende do valor de x.

Banner geral

Domínio, Contradomínio e Imagem da Função

Voltando à primeira definição de função, o conjunto A é denominado de Domínio D(f) da função e o conjunto B é o Contradomínio CD(f). Para cada x \in D, o y \in CD é denominado de Imagem da função Im(f) ou Im.

Dominio e Contradominio de uma função f.
Dominio e Contradominio de uma função f.

Voltemos ao Exemplo 1: Perceba que poderíamos ter escolhido infinitos números para x e testar na expressão y = x + 2.
O conjunto {-1 ; 0 ; 1} é um subconjunto (muito pequeno) do Domínio D(f) da função. Por isso, podemos dizer que {-1 ; 0 ; 1} \subset D(f).
O conjunto {2 ; 3 ; 4} é um subconjunto (também muito pequeno) da Imagem Im(f) da função. Por isso, podemos dizer que {2 ; 3 ; 4} \subset Im(f).
Observação: Por tradição/convenção, a variável dependente é representada pela letra y; e a variável dependente é representada pela letra x. Mas em cada problema você pode usar as letras que achar mais conveniente. O importante é sempre definir qual variável é a independente e qual é a dependente.

Alguns Exemplos a partir da Definição

Exemplo 2: Algumas formas de expressar uma função:

a) y = 2x + 1

b) y = 4 – x

c) y = 1,5x – 4,25

Exemplo 3: Analisando através da Tabela 1 como o custo de abastecimento de combustível varia em função do volume de combustível. Pergunta-se:

Tabela 1 – O custo varia com o volume abastecido.

a) Quanto custa 1L de combustível? Qual a expressão que define o custo em função do volume?

R: Se 5L custam R$12,50, 1L custa 12,50/5 = 2,50.

Portanto, temos que C = 2,5V, onde C é o custo de abastecimento e V é o volume abastecido.

b) Quanto custa 8L de combustível?

R: Sabendo a forma da função Custo em função do Volume é C = 2,5V, temos que C = 2,5*8 \dpi{120} \Rightarrow C =  20,00.

c) Se alguém paga R$60,00, quantos litros essa pessoa abasteceu?

R: Substituindo na expressão C = 2,5V fica \dpi{120} \Rightarrow 60 = 2,5V \dpi{120} \Rightarrow V = 60/2,5 \dpi{120} \Rightarrow V = 24L

Comentários: Através do Exemplo 2, vimos que o custo de abastecimento C é dependente do volume abastecido V (variável independente). Com isso podemos dizer que nesse caso que a função y = f(x) pode ser escrita na forma C = f(V). 

Mais um exemplo!

Exemplo 4: Dado um retângulo com lado maior de m e lado menor n e perímetro de 24cm.

Retângulo do Exemplo 3

Nesse caso:

a) Qual a lei que rege a relação de m em função de n?

R: O perímetro (2p) de um retângulo é dada pela seguinte expressão 2p = 2m + 2n. Temos: 24 = 2m + 2n  \dpi{120} \Rightarrow 2m = 24 – 2n \dpi{120} \Rightarrow m = \mathbf{\frac{24 - 2n}{2}} (lei que define a relação entre o lado maior e menor).

b) Se o lado menor for 3cm, qual o valor do lado maior?

R: Sabendo que m = \mathbf{\frac{24 - 2n}{2}}, temos: m = {\frac{24 - 2*3}{2}} = \frac{18}{2} \dpi{120} \Rightarrow m = 9cm

Pergunta 1: Um automóvel em linha reta numa estrada percorre as distâncias (d) de acordo com os seguinte tempos (t):

Tabela da Pergunta 1

a) Determine a função que relaciona d e t.

b) Qual a distância percorrida após 5h de viagem?

Assista ao vídeo para consolidar os conhecimentos:
Tranquilo? Acompanhou esse resumo teórico de conceito de função? Espero que sim!
Fique sempre de olho no Blog do Kuadro e no Canal do Kuadro para mais Resumos Teóricos. Até mais!

LOGO-KUADRO-branco

PDF – MÉTODO KUADRO DE APROVAÇÃO

Preencha o formulário e receba o seu PDF